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ABSTRACT 
 
Two simple methods are described for fusing the outputs of 
hyperspectral rare target detection algorithms to achieve more 
consistent results across a variety of images and objects of interest.   
The methods are demonstrated with atmospherically corrected 
(spectral reflectance) visible/near-infrared/shortwave-infrared and 
long-wavelength infrared hyperspectral imagery using five 
different detection algorithms that output generalized likelihood 
ratio decision statistics.  Results are presented for nine test cases. 
 

Index Terms—hyperspectral, fusion, detection, reflectance 
 

1. INTRODUCTION 
 

Detection algorithms for hyperspectral imagery can display a wide 
variation in effectiveness, depending on the scene and target of 
interest, even for a single sensor or class of problems.   Often no 
one algorithm is a clear “winner” or “loser” across a variety of test 
cases.  Development of robust, effective, and automated detection 
systems would greatly benefit from methods that assess the 
performance of candidate algorithms and select a “best” one, or 
that fuse algorithms to provide equivalent, or even better, 
performance.   
 
This paper demonstrates a simple but effective general approach 
for fusing “detection algorithms for “rare” targets in an image that 
have known “ground truth” spectra.  It is applied to a family of 
algorithms that includes the spectral angle mapper (SAM), ACE 
(adaptive covariance estimator) detector, and linear unmixing 
[1, 2]. The algorithms outputs are written in a Generalized 
Likelihood Ratio form that contains the reciprocal of a target-
fitting residual, so that a large positive value corresponds to a high 
likelihood of target presence.  Writing the output, or response, 
image for the ith algorithm as a column vector ri of length p pixels, 
the responses for n different algorithms are stacked to form an n×p 
array given by 

 
R = [r1, r2, … rn]

T    (1) 
 
The essence of the fusion approach is to apply standard multiband 
rare-target detection algorithms to this response stack.  One 
method uses the matched filter technique [1] with an appropriately 
defined target “spectrum”.   Another uses a simple modification of 
the RX anomaly detection method [3].  The RX method has been 
previously used for fusing multimodal data, such as hyperspectral 
plus synthetic-aperture radar [4], and time series of multispectral 
images [5].  
 
The utility of the fusion methods is illustrated with results from 
nine test cases based on three different examples of hyperspectral 
data. The first dataset consists of a long-wavelength infrared 

(LWIR) SEBASS hyperspectral image that has been processed to 
spectral reflectance [6].  The second dataset is from the Rochester 
Institute of Technology “self-test” [7], which is based on a HyMap 
visible/near-infrared/short-wave-infrared (visible/NIR/SWIR) 
reflectance image.  The third data example is an EO-1 Hyperion 
image of the Galveston, TX area, also converted to reflectance.  
Five individual detection algorithms and the two fusion methods 
were run on a total of nine target-image combinations and the 
detection results compared. 
   
The two fusion methods are found to provide more consistent 
detection performance across the range of test cases than any 
single algorithm, and for a given test case they usually perform as 
well as the best or next-best algorithm.  As the methods are not 
inherently specific to a particular wavelength range, type of scene, 
or target of interest, they may be useful in a wide variety of 
applications.  The sensitivity of the results to the mathematical 
form of the algorithm response remains to be investigated.  For an 
individual algorithm, responses that are monotonically related 
yield equivalent receiver-operator characteristic (ROC) curves, but 
this is not the case with the fusion methods in their current form. 
 

2. FUSION METHODS 
 

The first fusion method is based on linearly combining the 
algorithm responses ri to generate an image that maximizes target 
signal-to-noise.  This requires defining an n-band signal vector t 
that represents the “spectrum” of expected responses to the target.  
The ground truth target spectrum turns out not to be useful for 
calculating t, as it fails to account for unknowns such as spectrum 
variability, sensor artifacts and background contributions.  Instead 
we derive t from the response stack itself, assuming that the 
algorithms are sufficiently sensitive and selective that their 
responses to an actual target are close to their maximum responses 
in the scene.  This assumption is most sensible when there is at 
least one target present.  Accordingly, the target vector is taken as 

 
t = [max(r1), max(r2), … max(rn)]

T  (2) 
 
Under the assumption of Gaussian noise the signal-to-noise 
optimization solution is given by the output of a matched filter for 
t.  This may be written to within a normalization factor as 

  
fMF = (R-m)T [K-1(t-m)]  (3) 

 
where m is the R mean column vector, K is the covariance matrix 
for R, and the quantity in brackets is the matched filter vector. 
 
The second fusion method makes an opposite assumption:  it 
presumes that no a priori information is available about the 
algorithm responses to the target.  This turns the problem into one 
of anomaly detection in R space, which can be thought of as 



treating the algorithm response images as measurements of an 
unknown target taken with different bandpasses or sensors.  The 
standard RX anomaly detector is given by 
 

  fRX = (R-m)T K-1(R-m)    (4) 
 

which represents the squared Mahalanobis (whitened) amplitude of 
the pixel in R space. 
 
Eq. (4) by itself does not take advantage of the fact that the 
algorithm responses to the target are, by design, expected to be 
both large and positive.  A very small probability exists that a non-
target pixel might have multiple large negative values of ri-mi, 
yielding a large Mahalanobis amplitude and hence a false positive 
with Eq. (4).  These pixels can however be filtered out using a 
simple criterion such as non-negativity of the total response, which 
may be applied via 

 
fRX = 0 for Σi(ri-mi) < 0.  (5) 
 

3. HYPERSPECTRAL TEST CASES 
 

To evaluate the fusion methods we have assembled nine different 
hyperspectral test cases, spanning visible through long-wavelength 
infrared (LWIR) wavelengths.  
 
Test cases 1-4 are from a LWIR hyperspectral image taken by the 
SEBASS sensor [8] at the Department of Energy’s Lamont, OK 
Atmospheric Radiation Monitoring Site in June, 1997.  The site 
has various ground covers (grass, water, soil, and gravel), 
buildings, and an array of calibrated emissivity panels.  The panel 
array includes two moderately reflective targets, labeled E1 and 
E4, which each occupy around 40 pixels.  Another panel, E4U, 
located elsewhere in the image has the identical spectrum.  Ground 
truth panel pixel locations and emissivities were supplied.  The E1 
spectrum is shown in Ingram and Muse [9]; the E4 spectrum is less 
reflective but otherwise similar.  The SEBASS data were converted 
from spectral radiance to spectral emissivity estimates using an 
algorithm described by Adler-Golden et al. [6], which follows the 
basic method of Borel [10].  The results were processed in the form 
of reflectance = 1-emissivity.  Test cases 1 and 2, in which the E1 
and E4 plus E4U panels are the targets, utilize the full 700-line 
image.  Test cases 3 and 4 were generated by cropping the image 
to a 128-line square containing the E1 and E4 panels. 
 
Test cases 5-8 are from the Rochester Institute of Technology 
(RIT) public hyperspectral self-test and blind test web site 
(http://dirs.cis.rit.edu/blindtest/) [7].  The targets are fabrics and 
vehicles of measured reflectance located in a visible/NIR/SWIR 
image taken in July, 2006 at Cooke City, MT by the HyMap 
hyperspectral sensor.  The data are in reflectance units.  We 
selected four self-test cases, fabrics 1, 2 and 4 and vehicle 1.  
Target pixel locations are provided as separate region of interest 
(ROI) maps for subpixel and whole-pixel fills.   
 
Test case 9 is from a February, 2008 visible/near-IR/short-wave IR 
image of the Galveston, TX area taken by the Hyperion 
hyperspectral sensor on the EO-1 satellite.  We processed the data 
to spectral reflectance using the FLAASH code [11] in the ITTVIS 
ENVI software version 4.6.1.  The original 3242-line image was 
cropped to 600 lines to accommodate limited computer RAM.  The 
target to be detected is a large open pile of elemental sulfur, 

covering around 50 image pixels, located across from Pelican 
Island.  A whole-pixel target ROI was constructed by inspection.  
The sulfur ground truth spectrum is taken from a US Geological 
Survey spectral library in ENVI.    
 
For evaluating detection algorithm performance, the whole-pixel 
ROIs were taken as the “truth” locations, and one-pixel-wide 
buffers around the ROIs were taken as “ignore” locations (not 
counted as either detections or false positives).  The buffer regions 
correspond to the subpixel ROIs in the RIT test cases. 
 

4. DETECTION ALGORITHMS 
 

The fusion methods have been exercised with five different 
hyperspectral detection algorithms that are based on a Generalized 
Likelihood Ratio (GLR) decision statistic.  For the general case in 
which the pixels contain unknown amounts of target, background, 
and superimposed Gaussian white noise fluctuations, as described 
by Bajorski et al.[12], the statistic is taken as 
 

 r =  
RMS ୠୟୡ୩୥୰୭୳୬ୢ f୧୲ ୰ୣୱ୧ୢ୳ୟ୪

RMS ୲ୟ୰୥ୣ୲ ୟ୬ୢ ୠୟୡ୩୥୰୭୳୬ୢ f୧୲ ୰ୣୱ୧ୢ୳ୟ୪
 (6) 

  = (xTPBx / xTPzx)1/2   (7) 
 

where x is the pixel spectrum and PB and PZ are, respectively, 
matrices that project onto the space orthogonal to the background 
(B) and target-plus-background (Z) subspaces.  This r statistic is 
the GLR in Bajorski et al. [12] raised to the 1/p power, where p is 
the number of bands, and is therefore monotonic in a Matched 
Subspace Detector [13].  In the present examples of reflectance 
imagery, the target subspace is one-dimensional, defined by a 
scaling of the ground truth reflectance spectrum s. 
 
4.1. Unmixing Algorithm 
 
This algorithm models the background subspace with a basis set of 
endmember pixels.  The Eq. (7) projection matrices may be 
computed from Eq. (9) in Bajorski et al. [12].   
 
Automated routines are available for finding suitable scene 
endmembers or other background basis spectra.  With any routine, 
the appropriate number of basis spectra needs to be made.  Too 
many spectra could accurately fit target as well as background 
signatures, making it difficult to distinguish them.  Too few may 
result in poor background fits that allow substantial residual 
reduction when the target is included in the basis set, leading to 
large Eq. (7) ratios even for non-target pixels.  A further 
complication is the possibility that the selected basis spectra will 
be contaminated with the target spectrum.  With SVD eigenvector 
basis spectra, used by Thai and Healey [14] and Bajorski et al. 
[12], a high-contrast target, particularly one occupying a 
significant fraction of the image (i.e., a non-rare target), can 
contaminate the eigenvectors. With endmember pixel basis spectra, 
a target present in the image may show up as one of the 
endmembers, even if the target is rare. 
 
We have recently developed an automated method for selecting 
background endmember basis vectors that largely overcomes these 
problems. The procedure is as follows: 
 
1. The target spectrum or subspace is projected out of the data. 



2. Endmember pixels of the reduced-dimension result are found.  
In the MaxD algorithm [12] the first endmember is the 
brightest pixel and the second endmember is the dimmest.  
Before running MaxD we add a zero spectrum to the image, 
forcing the second endmember to be zero.  The total number 
of endmembers acquired should be more than what will 
eventually be needed; around 25 usually suffice.  The 
locations of the endmember pixels are tabulated. 

3. The original, full-dimension spectra of the tabulated pixels 
form an initial background endmember set.  The image pixels 
are then sequentially least-squares fit with these endmembers 
via projections until the fit residual is reduced to a specified 
value, thereby defining the final, selected endmember set. 

 
In the present case of a single-spectrum target, we determined the 
number of background endmembers by requiring that the scene 
RMS residual in step 3 be no smaller than a value representing the 
estimated RMS level of sensor noise and artifacts in the data.  This 
value, which is sensor-dependent, is the only adjustable parameter 
in all of the algorithms in this paper.  It has been set to 0.002 for 
the HyMap data, 0.007 for the Hyperion data, and 0.01 for the 
SEBASS data; the values are in reflectance units. 
 
4.2. Whole Pixel Algorithm 
 
If only whole-pixel targets are to be detected, and detector white 
noise is a dominant source of fluctuations in the target-containing 
pixels, it may be sensible to ignore the background subspace, in 
which case Eq. (7) becomes 
 

 r =  [ xTx / (xTx – xTs(sTs)-1sTx) ]1/2  (8)
   = csc(θ) , 

where θ is the vector angle between the target spectrum s and the 
pixel spectrum x.  This r statistic corresponds to the spectral angle 
mapper (SAM) algorithm [15], whose output is θ. 

4.3. Three Stochastic Algorithms 
 
The whole-pixel algorithm is readily generalized to account for 
non-white-noise fluctuations in the data (i.e., having a non-unit 
covariance or correlation matrix) by applying a whitening 
transform to the spectra.  If the transform is based on the scene 
second-order statistics, the algorithm functions as either a subpixel 
or whole-pixel detector.  Subtracting the mean spectrum m from all 
the data and using the scene covariance matrix Γ for whitening, the 
algorithm is described by Eq. (8) with the replacements  
 

 x →  Γ-1/2(x-m),  s →  Γ-1/2(s-m)     (9a) 

The resulting r statistic corresponds to the Adaptive Covariance 
Estimator (ACE) detector [16].  Alternatively, the scene correlation 
matrix C may be used to whiten non-mean-subtracted data, i.e., 
   

  x →  C-1/2x,  s →  C-1/2s     (9b) 

The use of non-mean-subtracted data in Eq. (9b) is a characteristic 
shared with algorithms such as SAM, Constrained Energy 
Minimization [17], and “invariant” subspace algorithms that utilize 
SVD basis spectra [14]. We call the Eq. (9b) algorithm Whitened 
Angle Mapper (WAM). 
 

Finally, to avoid the potential problem of contamination of the 
scene second-order statistics by the presence of a large or high-
contrast target we may use the background endmembers from the 
unimixing algorithm to build a “target-free” version of the data, 
from which the covariance or correlation matrix is then calculated.   
We thus derive a target-excluded variant of WAM, which we call 
TWAM. 

5. RESULTS 
 

For the nine test cases, ROC curves, plotting detected target pixel 
fraction versus false positive fraction, were constructed for each of 
the five detection algorithms and two fusion algorithms.  The 
results are summarized in Fig. 1 in the form of the false positive 
fraction when detecting 50% or more of the target pixels, a useful 
number for characterizing ROC curve performance.  For the 
single-whole-pixel targets this corresponds to detection of the 
whole target.  The displayed quantity is -log10(false positives per 
pixel+10-7), which indicates better detection with larger values and 
allows many orders of magnitude of false positives, including zero, 
to be shown on the same scale.    
 
The Fig. 1 results show the superiority of the matched filter fusion 
(MFF) and RX fusion (RXF) methods (solid lines) over the 
individual algorithms.  The closely related stochastic algorithms 
ACE and WAM (dashed lines) are the best single algorithms 
overall.  However, they perform poorly in the cropped SEBASS 
test cases 3 and 4, where the targets are not rare and therefore 
contaminate the covariance and correlation matrices.  Here the 
TWAM algorithm, which seeks to isolate the background subspace 
from the target, works the best.  The two fusion algorithms are of 
very similar quality, replicating the best detector results in nearly 
every case.  The RXF algorithm (triangles) does not quite match 
the effectiveness of ACE and WAM in case 7, but outperforms all 
other algorithms in case 9, where it yields zero false positives.  The 
Unmixing and SAM algorithms perform especially poorly in the 
current reflectance test cases; however, we have had reasonable 
success with analogous target subspace versions of these 
algorithms [6]. 

 
 

Fig. 1.  Detection performance of the five individual algorithms 
(Unmixing, WAM, TWAM, SAM and ACE; dashed and dotted 
lines) and two fusion algorithms (MFF and RXF; solid lines) in the 
hyperspectral test cases.   
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6. SUMMARY AND CONCLUSIONS 
 

Application of basic matched filtering or anomaly detection 
techniques to an output stack of GLR decision statistics has been 
shown in nine different test cases to provide effective means for 
fusing results from multiple rare target hyperspectral detection 
algorithms, providing more consistent performance than can be 
obtained from any one algorithm.   The fusion approach generally 
replicates the results of the best algorithms for a given test case and 
is insensitive to the presence of poor performers. This enables 
typically mediocre algorithms that are occasional standouts to be 
included in the mix.  One such algorithm, TWAM, uses 
endmember reconstruction to suppress contamination of scene 
second-order statistics by the target presence.  Although the results 
are not included here, we have had similar success in fusing target 
subspace algorithms, which are very useful for LWIR radiance 
imagery [6].   
 
Several issues remain unresolved.  The fusion results depend on 
the precise form of the algorithm decision statistic; this dependence 
should be investigated to better understand the favorable properties 
of the RMS residual ratio used here, and perhaps to develop a 
superior statistic.  The matched filter and RX fusion methods 
follow from an assumption of a multidimensional Gaussian 
distribution of the stacked statistics. The actual distribution is 
skewed, and can suffer from target contamination problems 
analogous to those in stochastic detection algorithms.  We 
therefore expect that further work will yield improved fusion 
methods. 
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