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ABSTRACT 
 
A new metric for anomaly detection in hyperspectral 
imagery is developed to account for anisotropic heavy tails 
in covariance-whitened data.  The anisotropy, consisting of 
a variation in tail heaviness with principal component 
number, commonly occurs when the number of linearly 
independent components representing the data to within the 
noise level is less than the number of data dimensions.  The 
detection metric is generated by representing the probability 
density function of the data with an empirical anisotropic 
super-Gaussian model for the probability density function.  
Its performance exceeds that of the RX and Subspace RX 
methods in examples from CAP ARCHER and HyMap 
imagery. 
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1. INTRODUCTION 
 
Anomaly detection seeks to detect objects of interest that 
are distinguished simply by being different from the rest of 
the dataset.  Here little if anything is known a priori about 
the probability density function (PDF) for anomalies, 
denoted fa, whereas the PDF for the non-anomalous (or 
“background”) data, denoted fb, can be reasonably well 
characterized.  In hyperspectral imagery (HSI) the 
multidimensional background PDF is generally derived 
from second-order spectral statistics gathered from the full 
image or from a smaller region that may exclude the pixel 
under evaluation, as in “real-time” and other spatially 
adaptive methods [1].  The detection metric is derived from 
the form of the PDF.  The best-known anomaly detection 
method for HSI, the RX algorithm [2], relies on the 
Mahalanobis distance (MD) metric.  MD is the amplitude of 
the data vector after mean subtraction and application of a 
linear whitening transform that converts the dataset to one 
having unit diagonal covariance: 
 

 MD = (i x′i
2)½ (1) 

 
Here x′i is the value of the whitened data in the ith 
coordinate, which is a principal component (PC) 

eigenvector of the dataset. Approximating the whitened 
PDF as a multidimensional Gaussian, it is monotonic in 
MD.  Upon further assuming that the anomaly PDF is a 
constant (since its variation is unknown), thresholding MD 
amounts to thresholding the likelihood ratio for detection, 
 
 fa(x′)/fb(x′)   ~ 1/ fb(x′) (2) 
 
More sophisticated treatments recognize the limitations of 
the Gaussian form of fb [3].  Actual whitened data PDFs 
typically have heavy (or “long” or “fat”) tails, in which 
extreme data values are more numerous than what a 
Gaussian distribution predicts.  One model for this behavior 
generalizes the multivariate Gaussian distribution to an 
elliptically contoured (EC) distribution [4].  However, this 
provides no benefit for anomaly detection, because the EC 
fb(x′) expression remains monotonic in MD, so the only 
difference is in the threshold value of the likelihood ratio 
that corresponds to a particular false alarm rate [3].  

In this paper a simple, readily constructed anomaly 
metric is presented that provides improved detection results 
when the tail-heaviness of the whitened data is highly 
anisotropic, i.e., dependent on the direction in PC 
coordinate space.  This behavior commonly occurs when the 
number of linearly independent components needed to 
represent the data to within the noise level is less than the 
number of data dimensions (i.e., spectral channels).  The 
leading (low-numbered) PCs capture the largest variations 
in the dataset; they tend to show non-Gaussian statistics, 
characterized by heavy tails.  In contrast, the trailing (high-
numbered) PCs tend to be noise-dominated and observe 
Gaussian statistics, with much shorter tails.  For example, 
this behavior is observed in a 400x400-pixel portion of a 
52-channel (0.5 to 1.1 m) hyperspectral image of suburban 
Indiana taken from a Civil Air Patrol ARCHER aircraft [5].  
Fig. 1 (top) shows the data density along two PC 
components, one low-numbered (the 11th) and the other 
high-numbered (the 33rd).   The distribution is close to 
symmetric along each PC, and, by definition, the two 
variances are identical. However, the half-width is narrower 
and the tail is heavier along the low-numbered PC.   A 
proper anomaly detector, which flags data in the thin 
regions of the distribution, should bias detection away from 
such heavy-tailed PCs. 
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Fig. 1. Top, scatter plot for the whitened ARCHER 
400x400-pixel sub-image along the 11th and 33rd PC 
coordinates (origin is at the center).  Bottom, an AS 
approximation to the data distribution. 
 
An ad hoc remedy to the heavy-tail problem is to remove a 
leading-PC subspace of the data, i.e., to simply omit some 
number of leading terms in the Eq. (1) sum [5].  While this 
method, called Subspace RX (SSRX), improves 
performance in many cases [6], it remains empirically 
based.  It would be more rigorous and less arbitrary to retain 
the likelihood ratio test while employing a non-Gaussian, 
non-EC description of the background PDF.  Some methods 
for characterizing such PDFs have been developed that 
utilize high-order statistics calculations [7] or Monte Carlo 
sampling [3], which are computationally intensive.  Here we 
present a method based on an anisotropic super-Gaussian 
(AS) model for the background PDF, defined to within a 
normalization constant by 
  

 fb(x′) ~ exp[-i (ai|x′i|)
P
i] (3) 

 
Whereas in the Gaussian PDF the logarithm of the data 
density along each PC coordinate is linear in the second 
power of the coordinate, here the power P varies with the 
PC number and is 2 or less.  An AS representation of the 
ARCHER data scatter plot is shown in Fig. 1 (bottom). 

Since fb(x′) is monotonic in the exponent or some 
arbitrary power thereof, the AS anomaly detection metric is 
taken as  
 

 AS = [i (ai| x′i|)
P
i]n (4) 

 
The free parameters ai and Pi may be readily obtained from 
the whitened data via histogramming and linear regression.  
Referring to Eq. (1), MD represents the special case of Eq. 
(3) in which Pi = 2, ai = 1 and n = ½.  In the general case n 
may be chosen as some average inverse of the Pi, so that the 
AS output has a similar dynamic range to the MD output; 
however, its value has no effect on detection performance.  
A drawback of the Eq. (3) PDF model is that it fits an EC 
distribution only in the Gaussian special case.  Therefore the 
AS metric may be poorer than MD for anomaly detection 
with some datasets.  The real potential benefit of the AS 
metric is with datasets in which Pi varies strongly with i, 
such as the Fig. 1 data. 
 

2. IMPLEMENTATION AND APPLICATION 
 
Parameter Extraction 
 
We denote Hi, a one-dimensional function of coordinate i, 
as the integral of Eq. (3) over all PC coordinates except the 
ith.  Given a finite data set, each Hi corresponds to a 
histogram of data frequency versus PC coordinate value.  
Noting that Eq. (3) is separable into i-dependent factors, it is 
straightforward to show that 
 
 ln(Hi) = bi - ai

P
i|x′i|

P
i (5) 

 
where the bi are constants.  Appropriate a and P parameters 
may be extracted directly from the data histograms.  A 
simple procedure for each i is to set a trial Pi value, 
determine ai from a linear regression fit of ln(Hi) using |x′i|

P
i 

as the independent variable, and repeat the process with 
various Pi values to determine a best-fitting pair of ai and Pi.  
We have used this procedure with trial P values ranging 
from 0.1 to 2.0 in increments of 0.1.   The histogram bins 
used in the fit are restricted to those containing some 
minimum number of data points in order to insure adequate 
statistics, although this may introduce a very small bias 
towards heavier tails (lower P values). 

Typical P values obtained from the ARCHER data with 
this procedure are shown in Fig. 2 (top).  There is a gradual 
but unmistakable increase in P with PC number, and the 
highest values, around 1.5 or greater, occur where the 
eigenvalues level off, a further indication of noise-limited 
behavior.  We also analyzed a 400x400-pixel region of a 
HyMap hyperspectral data strip taken at Davis, CA, which 



is of an agricultural area containing some manmade objects.  
These data have both a higher signal-to-noise and a more 
extended spectral range (0.5-2.4 m) than the ARCHER 
data.  A further increase in signal-to-noise was obtained by 
re-binning the data from 120 to 60 spectral bands.  As 
shown in Fig. 2 (bottom), here there is much more scatter in 
the P values, and the increase, if any, is much more gradual.  
The values for the high-numbered PCs do not exceed 1.5 
and average around 1.1, indicating that these PCs retain 
considerable surface clutter information. 

   

 

 
Fig. 2. Values of the PC coordinate power P for the 
ARCHER (top) and HyMap (bottom) image sub-regions. 
 
Performance Characterization 
 
For an initial comparison of the MD (RX) and AS anomaly 
metrics, we applied them to the detection of three green 
tarps in the ARCHER sub-image.  Receiver-operator 
characteristic (ROC) curves for detecting the 28 fully-filled 
tarp pixels are shown in Fig. 3.  The new AS metric 
provides a dramatic improvement in detection performance 
over the MD (RX) metric, amounting to one to two orders 
of magnitude reduction in false detections.  Also shown in 
Fig. 3 are the MD and AS metric results with the first four 
PC terms excluded; the former represents the optimal SSRX 
method.  Interestingly, removal of these terms improves 
performance with the AS metric as well as the MD metric. 

 
Fig. 3. ROC curves for detection of a tarp target in the 
ARCHER image; the first four PC terms are excluded in the 
heavy curves. 
 
We generated additional test cases via a synthetic method 
[3] that uses data from a large image containing different 
terrain types or material classes in different regions.   The 
background data are taken as a region dominated by a 
particular terrain type or subset of material classes.  The 
target data are a spectrally diverse collection of pixels, 
preferably of a contrasting surface type, taken from outside 
the background region.  The target pixels are “embedded” in 
the background region and the anomaly detection algorithm 
exercised to detect the entire target collection.  We used this 
approach to evaluate the anomaly metrics on multiple urban 
targets from the ARCHER and HyMap scenes.  The 
ARCHER targets consisted of 12 pixels from residential 
areas outside the 400x400-pixel sub-image.  The HyMap 
targets consisted of 18 pixels from the University of 
California campus, located several hundred image lines 
away from the agricultural background area.  In both 
datasets the target pixels were mainly from roofs, roads, 
parking lot pavement, and vehicles.  For simplicity the 
targets were excluded from the background PDF statistics; 
this corresponds to detecting a rare target in a large scene, 
or to a spatially adaptive method of gathering the 
background statistics.  Here the target embedding is virtual, 
as the ROC curves are constructed directly from the values 
of the anomaly metric for the target and background pixels. 

Results for the ARCHER urban targets are shown in 
Fig. 4.  The AS advantage over the RX metric is smaller 
here than with the tarp targets in Fig. 3, but still amounts to 
an order of magnitude or more reduction in false detections.  
Excluding leading PC terms leads to slightly better 
performance.  Results for the HyMap urban targets are 
shown in Fig. 5.  Again, the AS method performs better 
than the RX method, although by a much smaller margin 
than with the ARCHER scene (up to a twofold reduction in 
false detections).  Here exclusion of leading PC terms 
slightly worsens the performance of both the RX and AS 
metrics. 



 
Fig. 4. ROC curves for detecting twelve urban pixels 
“embedded” in the Fig. 1 background image using various 
methods. 

 
Fig. 5. ROC curves for detecting eighteen urban pixels 
“embedded” in the HyMap image of Davis, CA using 
various methods.  Heavy solid line = AS, heavy dashed line 
= RX (MD), thin dashed lines = SSRX with 1, 2 or 4 PC’s 
omitted. 
 

3. CONCLUSIONS 
 
Detection of anomalies in hyperspectral and other 
multidimensional datasets via the likelihood ratio test relies 
on the ability to model the background probability density 
function (PDF).  Using an anisotropic super-Gaussian (AS) 
model for the PDF, a new anomaly detection metric that is 
monotonic in this PDF is found to outperform both the RX 
and subspace RX (SSRX) [5] methods in our test cases.  
There is undoubtedly room for further improvement.  For 
simplicity, the present work was conducted using large-area 
PDF statistics.  Better performance may result from locally 
adaptive schemes for defining the background [8], as well 

as by including a target PDF, derived from general 
knowledge of target spectral properties, in the likelihood 
ratio for detection [6].  In addition, it would be very 
desirable to develop an improved, but still easily calculated, 
PDF model that can describe EC as well as non-EC 
distributions. 
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