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ABSTRACT 

 
Subspace methods for hyperspectral imagery enable detection and 
identification of targets under unknown environmental conditions 
by specifying a subspace of possible target spectral signatures 
(and, optionally, a background subspace) and identifying closely 
fitting spectra in the image.  In this study, detection performance in 
the thermal infrared (IR) was compared using various constrained 
and unconstrained basis set expansions of low-dimensional target 
subspaces.  An initial investigation of detection using retrieved 
atmospheric parameters to reduce subspace size and/or 
dimensionality has also been performed. 
 

Index Terms— hyperspectral, subspace, invariant, 
detection, infrared 

 
1. INTRODUCTION 

 
Hyperspectral imaging (HSI) from airborne or space-based 
platforms is a valuable technology for detecting and classifying 
materials and objects on the Earth’s surface based on their spectral 
signatures.  Analysis of these data is challenging, however, as the 
signatures contain variable atmospheric components and surface 
spectral properties.  In the solar wavelength region there are well-
established atmospheric correction or “compensation” methods for 
removing atmospheric effects and retrieving surface reflectance 
[1].  For thermal IR HSI sensors, analogous methods exist for 
retrieving surface emissivity [2-4], but they tend to be more 
complex, less accurate, and more computationally intensive due to 
the need to retrieve temperature information.  

An alternative analysis approach that is especially attractive 
in the thermal IR is based on radiance spectrum simulation.  First-
principles simulations are used to develop a comprehensive dataset 
of potential target spectral signatures, encompassing a broad range 
of atmospheric conditions, surface temperature, etc.  For whole-
pixel detection, the results are compared to the measured pixel 
spectra; a good match (low residual) suggests that the pixel 
contains the target in question; a poor match indicates otherwise. 
This approach becomes practical with an efficient matching 
algorithm.  In the “invariant” subspace approach of Healey and 
Slater [5], the target dataset, which includes all possible sources of 
variability, is compressed down to a small subspace of singular 
value decomposition (SVD) basis vectors.  To find a whole-pixel 
target, the pixel spectra L are fit using this basis set, and an error 
residual is computed and thresholded.  Healey and Slater fit 
amplitude-normalized pixel spectra and calculate the root-sum-
square (RSS) error residual; this is equivalent to normalizing RSS 
error to the pixel spectrum amplitude, i.e.,  
 σn = || L- ∑αjmj || / ||L||  (1a) 

Here the mj are the SVD basis vectors, αj are the coefficients of the 
fit, and the double bars denote Euclidean norm.  The invariant 
approach was later extended to the detection of subpixel targets [6] 
by modeling the subpixel background as a second subspace, using 
background basis vectors as additional fitting components.  Later 
work on subpixel detection has employed different types of basis 
sets, including an endmember basis set [7].  We note that a slightly 
more efficient basis set can be generated by subtracting the mean 
of the subspace spectra prior to performing the SVD.  Here fitting 
error is not proportional to amplitude, so a non-normalized error 
expression  
 σ’n = || L’ - ∑α’jm’j ||  (1b) 
is appropriate, where the m’j are the SVD basis vectors of the 
mean-subtracted target subspace, L’ is the pixel spectrum after 
subtraction of the target mean, and the α’j are the coefficients of 
the fit to L’.  

The subspace approach is very flexible, allowing it to be 
tailored to a variety of remote sensing problems.  For example, 
when atmospheric parameters are known from weather data but 
range to the target and surface temperature are unknown, there are 
only two dimensions in the target subspace, which can be 
represented with far fewer SVD basis vectors than the typical ten 
or so used by Healey et al. [5,6].  This reduction in dimensionality 
improves detection performance.  The subspace approach is also 
amenable to detecting objects with intrinsic variability.   

A limitation of existing subspace methods is that the size (as 
distinguished from dimensionality) of the subspace spanned by the 
basis vectors is not constrained, since the coefficients αj (or α’j) 
can take on any values.  Potentially, non-target spectra might be 
closely fit with the target basis set using unphysical coefficient 
values, resulting in false detections.  In this paper we investigate 
two different constrained fitting methods that address this problem.  
In the first method, called “constrained SVD,” SVD basis vectors 
are used with bounds on the fitting coefficients.  In the second 
method, the basis vectors are target spectral endmembers, which 
define a simplex that follows the boundary of the subspace.  Using 
positivity and sum-to-unity constraints, the pixel spectral fits lie 
inside the target simplex.  We have implemented this approach 
with a sequential projection method used in the SMACC 
endmember algorithm [8,9], which is around an order of 
magnitude faster than standard constrained least-squares methods.   

This paper presents results from these subspace methods with 
an LWIR image from the SEBASS hyperspectral sensor [10]. Two 
test cases are considered:  known atmospheric parameters with 
unknown target range and surface temperature, and three unknown 
atmospheric parameters with unknown surface temperature.  A 
preliminary account of this work has been reported [11]. We also 
describe the use of an atmospheric retrieval method to lower the 
subspace dimensionality, which results in significantly improved 
detection. 



2. METHODOLOGY 
 

2.1. Target Subspace Construction 
 
The spectra defining the target subspace are constructed from a 
standard LWIR/MWIR radiation transport (RT) equation that 
relates a ground object’s surface temperature T and emissivity 
spectrum e to the radiance L measured by a distant sensor [11]: 

 L = e t B(T) + (1-e)D(t) + P (2) 

The Eq. (2) parameters are implicitly wavelength-dependent.  
Transmittance t, path radiance P and downwelling illumination 
D(t) depend on atmospheric conditions.  We have found that three 
dimensions of variability (air temperature, column water vapor and 
ozone concentration) are adequate for modeling the variations in t, 
P, and D(t) over a wide range of conditions.  The unknown T adds 
a fourth dimension to the target subspace.  The target emissivity 
may be available from an independent measurement or derived 
from HSI data using atmospheric retrieval (AR) and temperature-
emissivity separation (TES) procedures.  We use an AR-TES code 
that is based on the work of Borel [2]. This code uses 
MODTRAN4TM [12] to construct a 3-D look-up table of t, P and 
D(t) for a wide range of conditions, and retrieves emissivity and 
surface temperature on a pixel-by-pixel basis along with a single 
set of t, P and D(t) spectra for the scene.   

2.2. SVD Basis Sets and Fitting Procedures 
 
SVD basis sets for non-mean-subtracted data are obtained as 
eigenvectors of the target subspace correlation matrix. Somewhat 
more efficient basis sets, representing mean-subtracted data, are 
similarly derived using the target subspace covariance matrix.  The 
fitting coefficients in Eqs. (1a) and (1b) are the projections of the 
spectra onto the basis vectors.  In our constrained method, the 
target subspace spectra are projected onto the basis vectors, the 
extrema of the coefficients for each basis function j, denoted αjmin 
and αjmax, are collected, and these extrema are used to bound the 
fits of the pixel spectra.  That is, pixel spectrum projections less 
than αjmin or greater than αjmax are reset to αjmin or αjmax, 
respectively, in calculating the error residual.  

2.3. Endmember Basis Set and Fitting Procedure 
 
Endmember basis vectors for the target subspace were derived 
from the SMACC algorithm [9]. SMACC performs sequential 
projections to obtain both endmembers and their weighting factors 
in the spectral data.  A variation on this procedure [8] enables 
constrained fitting of the image pixels using the target 
endmembers.  The weighting factors resulting from these fits are 
the coefficients α’j, and the fitting error is calculated from Eq. 
(1b).  The method yields a least-squares solution when the 
positivity constraint is inactive.  

3. APPLICATIONS AND RESULTS 
 

We have investigated a hyperspectral image from the airborne 
SEBASS sensor [10] taken at the Department of Energy’s 
Atmospheric Radiation Monitoring site in Lamont, Oklahoma on 
June, 1997 at 21:21 LT from 1.5 km altitude.  The data are 
described elsewhere [4]. The analyzed spectral channels are 
between 8 and 13 μm, where the atmosphere has good 
transmission.  The site has various ground covers (grass, water, 

soil, and gravel), buildings, and calibrated emissivity panels.  We 
analyzed two panel targets, a ~20-30% reflective panel and a near-
blackbody panel.  Ground truth reflectance measurements exist for 
the reflective panel. 

Our AR-TES retrieved emissivity spectra agree quite well 
with ground truth measurements for various surfaces in the image.  
In the initial two test cases, retrieved emissivities define the target 
subspaces for the detection algorithm.  Here the target pixel and its 
subspace representation agree to within the accuracy of the basis 
set fit, corresponding to the hypothetical case of perfect knowledge 
of the atmosphere.  In Section 3.3 the use of ground truth 
reflectance is considered.   
 
3.1. Case 1:  Known Atmospheric Parameters, Unknown 
Target Range 
 
We assume that the atmospheric profiles, and hence the t, P and 
D(t) spectra, are reasonably well known, but that the target is at an 
uncertain distance from the sensor and has an unknown surface 
temperature.  The atmospheric t, P and D(t) spectra were taken 
from the AR-TES retrievals.  Eq. (2) was then used to construct a 
target subspace comprised of 30 radiance spectra covering five 
different surface temperatures (295 to 310 deg K) and six different 
distances.  Receiver-operator characteristic (ROC) curves that 
describe the detection of the panel pixels were constructed by 
calculating and thresholding the error residual from Eq. (1a) or 
(1b).  Additional test cases were generated with Gaussian white 
noise added to the data.   

Since the objective is to detect targets under a wide range of 
conditions, the algorithm was run on both the image and the 30-
member target subspace, and the total number of correct detections 
recorded.  The Figure 1 results, which include 5 μflicks of added 
noise, show how detection varies with the SVD basis set.  The 
curves are labeled with the number of basis vectors.  The detection 
metric is the Eq. (1b) error with mean-subtracted data and the Eq. 
(1a) error with non-mean-subtracted data.  However, using the Eq. 
(1b) error with the latter has little overall effect on the results.  
With three basis vectors there is a slight improvement upon 
constraining the coefficients (compare the solid and dotted lines).  
With fewer basis vectors the constraint has no effect.  Best overall 
performance is found with two basis vectors, equaling the number 
of subspace dimensions. 

 
Figure 1. ROC curves for reflective panel detection at unknown 
range using SVD basis sets. Key: U = unconstrained, C = 
constrained, M = target mean-subtracted data. 



Results using endmember basis sets were reported previously 
[11].  They are much less sensitive to the number of basis vectors 
than the SVD results; four-endmember and seven-endmember 
ROC curves overlap over most of their range.  Performance is 
comparable to the best SVD basis sets.   
 For the harder-to-detect near-blackbody panel, 2 μflicks of 
noise was added to the data.  As with the reflective panel, the 
constraints have no effect when the optimum number of basis 
vectors is used.  However, here three basis vectors are better than 
two.  The results from six-and eight-endmember basis sets, which 
fit the panel subspace to within respectively 1 and 0.5 μflick, are 
comparable to the three-vector SVD results [11].  

3.2. Case 2:  Unknown Atmospheric Parameters 
 
For this case, the target subspace was based on a 60-element, 3-D 
look-up table of atmospheric t, P and D(t) spectra generated by our 
AR-TES code.  These cover a 40 deg C range in surface air 
temperature, a factor-of-four range in column water vapor, and 
factor-of-two range in column ozone.  Each t, P, D(t) combination 
was used in Eq. (2) together with the target emissivity and five 
surface temperatures, yielding a 4-D target subspace of 300 
spectra.  As in Case 1, 5 μflicks RMS of Gaussian noise was added 
to the data.   
 Results for detection of the reflective panel are shown in 
Figure 2.  Here only the targets in the image are being searched 
for.  The SVD results use mean subtraction and the Eq. (1b) error 
metric.  Very similar results, not shown, were obtained using non-
mean-subtracted data with either Eq. (1a) or (1b).   
 The endmember method results display little if any variation 
with the basis set size between 14 and 29 endmembers; only the 
former is shown.  Their performance is much worse than that of 
the SVD basis sets, most likely because the target fitting error 
remains much larger than the noise level.  These poor fits may 
reflect a deficiency in the SMACC endmember selections.  Much 
better fits are however obtained with the near-blackbody target, 
where there is little difference in performance between the 
endmember and SVD basis sets.  Similar to Case 1, constraints 
provide little overall difference in performance with SVD basis 
vectors when the basis set is small.  However, they provide a 
modest improvement with six basis vectors. 

 
Figure 2.  ROC curves for reflective panel detection under 
unknown atmospheric conditions. 

3.3.  Unknown Versus Known or Retrieved Atmospheric 
Parameters 

 
For an initial study of the use of known or retrieved atmospheric 
parameters to reduce the target subspace dimensionality, the 2-D 
Case 1, making use of known parameters, was rerun for the image-
only targets and compared with the 4-D Case 2.  Results are shown 
in Figure 3 for the top-performing basis sets.  With known 
atmospheric parameters there is a dramatic improvement in 
detection (compare the Retrieved C2 and C4 curves).  Here the 
false detections are mainly from an adjacent, similarly reflective 
panel and from pixels that are partially filled with reflective 
building roofs. 
 For a more realistic test, mimicking the operation of a sensor 
system, the target subspaces were constructed from the ground 
truth reflectance spectrum rather than from the AR-TES retrieval.  
The results are shown as the Truth curves in Figure 3.  Here 
performance is compromised by inaccuracies in both the AR-TES 
atmospheric retrieval and the target subspace representation.  
These may include SEBASS sensor calibration inaccuracy as well 
as limitations in the accuracy and completeness of the 
MODTRANTM calculations in the AR-TES code.  While detection 
is uniformly poorer than with the retrieved emissivity, the 2-D 
subspace, which here makes use of less-than-perfect atmospheric 
information, is again superior to the 4-D subspace.  Interestingly, 
in the 4-D case the endmember basis set performs better overall 
than the SVD basis set. 

 
Figure 3.  ROC curves for reflective panel detection under 
retrieved (2-D subspaces) and unknown (4-D subspaces) 
atmospheric conditions.  Subspaces were constructed from 
retrieved or ground truth emissivity spectra, as indicated. 
   

4. SUMMARY AND CONCLUSIONS 
 
This paper describes the application of constrained basis sets for 
target subspaces to HSI whole-pixel detection problems.  The 
detection metric is based on the accuracy of the basis set fits to the 
pixel spectra.  One method uses SVD basis vectors with the fitting 
coefficients bounded by the target subspace.  Another uses 
endmember basis vectors with sum-to-unity and positivity 
constraints on the fits.  Two thermal IR test cases were considered: 
(1) known atmospheric parameters but unknown target range and 
surface temperature, and (2) three unknown atmospheric 



parameters and unknown surface temperature.  The constrained 
methods improve detection robustness by reducing over-fitting 
when too many basis vectors are used.  With inclusion of a 
background subspace, constrained methods may prove similarly 
helpful for sub-pixel detection. 
 We have also begun investigating the relative merits of 
subspace simulation-based and atmospheric retrieval approaches in 
the thermal IR.  An advantage of the latter is that an atmospheric 
homogeneity assumption constrains the atmospheric parameters to 
be consistent across all pixels.  Initial results suggest that 
atmospheric retrievals performed with current thermal IR 
hyperspectral datasets and algorithms are accurate enough to allow 
reduction of the target subspace by several dimensions, leading to 
improved detection.  Healey and Ratkowski [13] also note the 
inverse relationship between detection performance and subspace 
size, although their subspace reduction was achieved using 
weather data rather than the imagery itself. With less accurate 
atmospheric information, dimensionality reduction may prove 
problematic, whereas constrained basis sets might be used to 
bound the atmosphere within an estimated retrieval uncertainty. 
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