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The work of Noid et al. [J. Chem. Phys. 1977, 67, 404] has shown that sharp molecular spectra can be
obtained through a Fourier transform of the autocorrelation function of a classical trajectory. In the present
work, we extend this idea to obtain a spectrum by Fourier transform of the dipole moment function of collision
product trajectories. We show that this “classical collision spectrum” (CCS) is related to the cross section for
creating the product times an Einstein A factor. As a test case, we analyze product CO trajectories obtained
from O + CO collisions at 8 km/s and focus on the spectral resolution of the CCS. The CCS of these trajectories
shows rich quantum-like features, including well-separated vibrational overtones and rotational band heads,
which become more pronounced with particular trajectory weighting methods. For polyatomic cases, the
hope is that the CCS can be deconvolved into ro-vibrational specific probabilities and cross sections for
quasi-periodic trajectories, which would otherwise overlap in a conventional classical trajectory energy analysis.
Chaotic trajectories are expected to broaden and decrease the achievable resolution of the CCS. Chaotic
motion will therefore impact the ability to separate ro-vibrational specific cross sections, an issue that will be
addressed in future work.

I. Introduction

About thirty years ago, Noid et al. demonstrated how
molecular spectra could be obtained from an analysis of classical
trajectories.1 By Fourier transforming a suitable autocorrelation
function, they obtained accurate, sharp-featured spectra for
several model Hamiltonian systems. More recently, Fourier
analysis of the velocity autocorrelation and dipole moment
functions of classical trajectories have been used to analyze the
dynamics and generate spectra for a wide variety of systems,
including CH5

+ (ref 2) and the hydrated proton.3 In the present
work, we extend the work of Noid et al. to an analysis of spectra
of quasi-classical trajectory (QCT) collision products. The goal
is to develop improved methods of characterizing the final state
collision products in terms of quantum-specific states. For
polyatomic products, conventional QCT binning methods have
great difficulty in separating ro-vibrational cross section con-
tributions due to overlaps in a particular energy bin. Several
methods have been developed to separate and assign ro-
vibrational specific motion in classical trajectories. Schatz and
co-workers developed methods based on the fast Fourier
transform method and determination of good action angle
variables through space-fixed and normal mode transformations.4

Hase and co-workers have also developed methods to quantize
vibrational motion for polyatomics by transforming to the Eckart
rotating axis frame.5 In general, these methods have proven
difficult to apply to general cases.

The calculation procedure we developed involves first
performing QCT calculations of molecular collisions at a
particular collision energy, with each trajectory sampling a range
of orientation and impact parameters in the usual way.6 At the
end of each trajectory, however, we retain the final positions
and momenta of the collided products. Then, using this set of
final positions and momenta, we continue each trajectory and
Fourier transform the dipole moment of the collided products.
The weighted average of these transforms is a “classical collision
spectrum” (CCS) of the nascent collision products, which is

related to the cross section for creating the product times an
Einstein A factor.

The CCS, obtained by straightforward extension of standard
QCT methods, may offer several benefits for analysis of classical
trajectories. With knowledge of measured or calculated product
Einstein A values, and if final product spectral contributions do
not overlap too much, it may be possible to deconvolve the
CCS and estimate quantum specific cross sections. The idea is
that ro-vibrational product cross sections, which would otherwise
overlap in a conventional internal energy analysis, will separate
more cleanly in the classical collision spectrum. The CCS may
also be compared directly to molecular beam experiments where
spectra of the nascent collision products are measured, providing
a useful common point of analysis between experimental
observables and theory. Finally, as ab initio molecular dynamics
becomes more routinely used, with accurate forces and dipole
moments available at each trajectory step, generation of the CCS
should be readily achievable, even for very large molecules.

An important potential complication of the CCS method is
the possible presence of chaotic motion in classical trajectories,
especially if this motion does not have a quantum analog.7

Quasi-periodic motion leads to well-defined spectral lines.
Classically chaotic motion, which may exist even at the zero
point level,8 will effectively broaden the classical spectrum by
introducing many weak lines clustered near the expected
transition energies.5,9 In general, at lower energies for polyatomic
systems, trajectories are quasi-periodic and smoothly transition
to a more chaotic motion with increasing energy. However,
particular molecules and motion may not follow this trend, and
it is difficult to predict the degree of chaos expected for a
particular case. Cho et al.,10 for example, found the onset of
chaos of the bending mode of HCN at ∼11 000 cm-1. However,
the onset for chaos for the stretching modes was ∼26 000 cm-1,
and only a fraction of the stretching modes became chaotic
below the dissociation threshold. For many systems examined,
the classical power spectrum appears to retain discrete band-
like features, even at high energies11 and even where the degree
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of classical chaos is judged to be large.10 In general, chaotic
trajectory broadening is expected to decrease the achievable
resolution of the CCS. Chaotic motion will therefore impact
the ability to separate ro-vibrational specific cross sections, an
issue that will be addressed in future work on polyatomic
systems. In the present work, we focus on formulation of the
method and application to a well-characterized system which
gives sharp spectra even at very high energies.

In section II, we develop the theory of the CCS. Starting with
the work of Noid et al., we obtain an expression relating the
CCS of a single trajectory to a set of Einstein A values and
transition energies. We then show that the weighted average of
classical spectra can be related to the ro-vibrational specific cross
section times a set of Einstein A values. In section III, we
illustrate the method by examining O(3P) + CO(1Σg) collisions
at 8 km/s. We used the potential energy surfaces and product
CO trajectories of our previous QCT studies,12,13 in which the
product state distributions compared well to measurements.13-15

For the CO diatomic product, conventional QCT methods
provide ro-vibrational specific cross sections which serve as a
benchmark test case with which to compare the CCS results.
We first investigate the dependence of the CCS results on the
semiclassical vibrational and rotational actions and on numerical
integration errors for single CO(V,j) semiclassical trajectories.
We then generate classical spectra of the product CO, averaging
over a large set of O + CO trajectories. The resulting CCS of
the O + CO collision trajectories shows rich quantum-like
features, including well-separated vibrational overtones and
rotational band heads, which become more pronounced with
particular trajectory weighting methods. In section IV, we give
conclusions and discuss possible future applications to poly-
atomic systems.

II. Methods

In this section we derive an expression relating the Fourier
transform of the dipole moment of a single classical trajectory
to a set of Einstein A values and transition energies, which we
call a classical collision spectrum (CCS). We then show that a
weighted average of these CCS is related to the product of a
ro-vibrational specific collision cross section times this set of
Einstein A values. In principle, these relationships allow the
deconvolution of the averaged CCS obtained from trajectories
of collision products into ro-vibrational specific cross sections.

Following Noid et al.,1 we start with the definition of the
line-shape function, I(w):

where C(t) ) 〈x(0) x(t)〉 is the autocorrelation of some dynamical
variable, x(t) (coordinate, dipole moment, etc.), and the brackets
denote an ensemble average. Noid et al. show that for an ergodic
or quasi-periodic trajectory, the brackets can be removed to yield
an expression,

For an absorption line shape, the dynamical variable x(t) ) µb(t),
where µb(t) is the dipole moment function. We can relate the
absorption line shape, I(ω), to the absorption cross section, R(ω),
of a single trajectory,16

The integral of the absorption cross section with respect to the
frequency near an absorption line center is the absorption
coefficient, S, which is related to the Einstein A value,17

In the above equation, Aul is the Einstein A coefficient from an
upper state, u, to a lower state, l, and gu and gl, respectively,
are the degeneracies of the upper and lower states. We note
that the full absorption spectrum will contain a number of lines
connecting the lower state l to a set of upper states {u}.
Substituting eq 3 into eq 4, and using eq 2 for the absorption
line shape, we can relate the Einstein A coefficients to the
Fourier transform of the dipole moment function of a single
trajectory:

In eq 5, λ is the wavelength, and A{u}l(λ), which we call the
classical collision spectrum (CCS), is a set of Einstein A
coefficients connecting the lower state l with all dipole allowed
upper states {u} at the transition wavelengths λl{u} ) {λlu1, λlu2,
etc.}. In other words, the expression A{u}l(λ) represents a
classical analog of an absorption stick spectrum of a particular
ro-vibrational state l defined by the initial position and momen-
tum of the trajectory. The peak heights are equal to the Einstein
A values from the upper state u to the lower state l, and the
wavelengths at which the peaks appear are the transition
wavelengths from l to u. Formulating the CCS in this way
facilitates comparison to literature values of the Einstein A
coefficients. To evaluate eq 5 in practice, we compute a discrete
Fourier transform over a time window of length T for each of
the vector components of the dipole moment function, and we
approximate the integration interval over the frequency, ν,
around each line by multiplying each Fourier transform fre-
quency bin by the bin width, 1/T,

In eq 6, ∆t is the discrete Fourier transform time step, T )
N∆t, where N is the number of Fourier transform time steps,
{x̂, ŷ, ẑ}are unit vectors along the Cartesian {x, y, z} directions,
n denotes a time bin, and k a frequency bin.

Now suppose a number of molecular trajectory collisions are
performed in the standard QCT manner, where an average over
the relative orientation of the reagents and over the collision
impact parameter is taken in the usual way. For a particular
trajectory, once the products are far away from each other, we
take the position and momentum of one of the products to define
the ro-vibrational state l. Analogous to the expression for the
collision cross section, we write the average of the CCS over a
number of such trajectories,

I(ω) ) 1
2π ∫-∞

∞
C(t)e-iωt dt (1)

I(ω) ) 1
2π

lim
Tf∞

1
T

| ∫0

T
x(t)e-iωt dt|2 (2)

R(ω) ) 4πωI(ω)
3pc

(3)

S ) ∫R(ω) dν ) c2

8π2ν2
Aul

gu

gl
(4)

A{u}l(λ) ) 64π4

3hλ3

gl

gu
∫ dν 1

T
| ∫0

∞
µb(t)e-iωt dt|2 (5)

A{u}l(λk) ≈ 64π4

3hλ3

gl

gu

1

T2
[|∆t ∑

n)1

N

x̂ · µb(tn)e
-i2πnk/N|2 +

|∆t ∑
n)1

N

ŷ · µb(tn)e
-i2πnk/N|2 + |∆t ∑

n)1

N

ẑ · µb(tn)e
-i2πnk/N|2] (6)
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In eq 7, Ntot is the total number of trajectories, wl is the weight
of the trajectory with final position and momentum l, and A{u}l

are CCS of individual trajectories associated with a particular
l. In standard QCT, each trajectory has the same statistical
weight. The weighting factor, w, in eq 7 follows the work of
Rayez and co-workers and others.18-20 They have shown that
weighting semiclassical trajectories with Gaussian-like coef-
ficients centered near integer vibrational actions, which is
analogous to choosing integer actions for reagents, builds in
quantum-like behavior and leads to improved agreement with
corresponding quantum mechanical results. Using standard QCT
methods for choosing the initial orientation of reagents and if
we bin the l states into quantum specific ro-vibrational product
states, q, we can write the probabilities and cross sections in
terms of the weights,

where in eq 8, ∑lfqwl represents the sum of all those trajectories,
l, binned into ro-vibrational state, q, bmax is the maximum impact
parameter of the QCT calculations, σq is the cross section to
the ro-vibrational product state q, Pq is the probability of forming
the products in state q, and σtot is the sum of all σq. We now
write eq 7 in terms of the probability of molecular collisions
which lead to the ro-vibrational state q,

Equations 6-9 are the main results of this section. Equation
9 shows that the averaged CCS, Aj(λ), can be interpreted as an
absorption spectrum of the nascent products of molecular
collisions. These equations also provide an alternative way to
estimate the ro-vibrational specific probabilities and cross
sections from standard QCT methods. We first generate the CCS
average, Aj(λ), from eqs 6 and 7. Then with knowledge of the
Einstein A coefficients we can deconvolve the spectrum for the
quantum specific probabilities Pq using Equation 9. The hope
is that the average CCS will separate contributions of different
product states, q, which would otherwise overlap in conventional
energy binning analysis.

The useulness of the averaged CCS and the deconvolution
procedure will depend on how cleanly the averaged CCS
separate into ro-vibrational contributions and in the details of
numerical implementation. In the next section we investigate
these issues by examining the CCS of single trajectories of the
CO molecule and by using various weighting methods to
compute averaged CCS for collisions of CO with atomic oxygen.

III. Results

A. Single Trajectories. We now examine CCS of single
trajectories of the CO molecule. All results use the potential
and QCT methods of refs 12 and 13 and the CO dipole moment

function of ref 21. Figure 1 shows four different CCS, each
computed with eq 6. Each CCS used different initial positions
and momenta, l, labeled by their semiclassical actions, (V ) 0,
j ) 90), (V ) 1, j ) 90), (V ) 2, j ) 90), and (V ) 3, j ) 90),
and prepared using standard WKB methods.6 The trajectories
were integrated with a standard velocity Verlet algorithm,22 with
106 time steps of 1 × 10-16 s spacing. The FFT of each trajectory
was obtained by zero-padding the trajectory to the next power
of 2, 220 points, giving a spectral bin width of 0.318 cm-1. These
parameters are associated with our “standard” numerical con-
vergence parameters. Examining a single trajectory, we observe
the expected absorption progression of ∆V ) 0, 1, 2, 3 peaks.
The ∆V ) 0 region contains one transition corresponding to an
“absorption” from j ) 90f 91. The other spectral regions each
have “P” and “R” pair peaks associated with a unit change in
the rotational “quantum number”. As shown below, the peak
positions are all within ∼10 cm-1 of reference positions for
transitions obtained by computing the WKB energies with this
same potential. We point out that the WKB energies are not
exact for the nonharmonic CO potential used here. The WKB
energies and transitions are used as a convenient consistency
check. Noid et al. have shown similar good agreement between
classical power spectrum peaks and exact quantum mechanical
eignvalues.1 The Einstein A coefficients agree qualitatively with
benchmark calculations using a similar quality potential and
dipole moment function. It is interesting that several quantum
features of the absorption spectrum, including overtones and
rotational selection rules, are recovered fairly well by such
classical trajectories.

As Noid et al.1 show, the exact spectral peak locations will
depend on the choice of semiclassical quantum number. Figure
2 shows the CCS of CO computed with eq 6 near ∆V ) 1
transitions. Five spectra are shown, each with a different
classical action for the initial condition l ) (V, j). These initial
conditions are centered around (V ) 1, j ) 90): (V ) 0.5, j )
90), (V ) 0.75, j ) 90),(V ) 1.0, j ) 90), (V ) 1.25, j ) 90),
and (V ) 1.5, j ) 90). As the classical action is varied near a
vibrational action of 1.0, the peak positions shift and the peak
heights change. To examine this more in depth, Figure 3 shows
the transition energy versus error in CCS peak position for 11
different transitions associated with the progression, V, j ) 90
f V - 1, j ) 89, where V ) 1 f 11. We chose to analyze this
progression in depth because these transitions are prominent in
the band-head structure of the emission spectra of 8 km/s O +
CO collisions12-15 and because the results are fairly representa-
tive of other transitions we have examined. The reference
transition energies are obtained by computing the WKB energies
of CO with the same potential with the semiclassical quantum
numbers (V ) 1 f 11, j ) 90) and (V ) 0 f 10, j ) 89) and
taking the difference between the results. The CCS results are
obtained with trajectories composed of 107 time steps of 10-18

s in width. The Fourier transform was obtained by zero-padding
the trajectory to the next power 2 making 224 points, giving a
spectral bin width of 0.0199 cm-1. These parameters are
associated with our “fine” numerical convergence parameters.
For averages over many trajectories, fine parameter convergence
can become impractical, but for single trajectories they are useful
to illustrate the degree of numerical error in practical computa-
tion. The error shown in Figure 3 is the CCS peak energy bin
value minus the corresponding WKB transition energy. CCS
results are shown for 5 different choices of the semiclassical
quantum numbers l ) (V, j): (V - 0.5, j ) 89.5), (V - 0.5, j )
90), (V - 0.5, j ) 89), (V, j ) 89.5), and (V - 1, j ) 89.5).
These five choices show the variation in the CCS peak positions

Aj(λ) ) 1

∑
l

Ntot

wl

∑
l

Ntot

wlA{u}l (7)

Pq )
∑
lfq

wl

∑
l

Ntot

wl

)
σq

σtot
)

πbmax
2 ∑

lfq

wl

πbmax
2 ∑

l

Ntot

wl

(8)

Aj(λ) ) ∑
q

PqA{u}q (9)
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with variations of the semiclassical action over a vibrational
and rotational bin.

In quantum mechanics, spectra are usually generated by
computing matrix elements between initial and final wave
functions. For classical spectra, the optimal choice of semiclas-
sical action is not immediately clear. As Noid et al. show, the
best results are obtained by choosing a semiclassical action
which is midway between the actions of the lower and upper
states involved in the corresponding quantum transition.1 This
argument is motivated by examining the expression for the
quantum mechanical spectral frequency. Following eqs 3.3-3.6
of ref 1 for a single mode, the quantum mechanical transition
frequency is

where E(nf) and E(ni) are the final and initial energies of the
transition, respectively, and the partial derivative, ∂E/∂n is
evaluated at the mean value of the initial and final classical
actions, n ) 1/2(nf + ni). Since the partial derivative of the

energy with respect to the classical action is the classical
frequency, the partial derivative, ∂E/∂n, evaluated at the mean
value of the actions is the usual classical mechanical angular
frequency. Using the approximation of eq 10 therefore, we use
trajectories evaluated at the mean actions of the transitions
involved as best estimates for the corresponding quantum
spectrum. For the present case of CO, these transitions cor-
respond to the progression labeled (V - 0.5, j ) 89.5), and give
a nearly constant error with respect to the WKB energy of about
-0.5 cm-1. Varying the rotational action across a rotational bin,
from j ) 89.0 to j ) 90.0, the energy error reaches about (4
cm-1. Varying the vibrational action across a vibrational bin
from n ) V - 1 to n ) V the energy error reaches about (12
cm-1. Investigations of several other transitions yield a similar
result. Calculations with the “standard” numerical convergence
parameters give nearly the same absolute errors in peak
positions. This means that for transitions to the fundamental
band, ∆V ) 1, there will be an inherent spread of the spectral
peak positions of about 30 cm-1 with uniform (histogram)

Figure 1. Classical collision spectra (CCS), A{u}l(λ), of CO computed with eq 6. Four spectra are shown, each with a different classical action l
) (V, j): (V ) 0, j ) 90), (V ) 1, j ) 90), (V ) 2, j ) 90), and (V ) 3, j ) 90). (a) CCS over a large energy and intensity scale. The ∆V notation
suggests the corresponding quantum vibrational state transitions. (b) Same as (a) except the range of ∆V ) 0 transitions has been expanded. (c)
Same as (a) except the range of ∆V ) 1 transitions has been expanded.

Figure 2. Classical collision spectra (CCS), A{u}l(λ), of CO computed
with eq 6 over a limited spectral range, near ∆V ) 1 transitions. Five
spectra are shown, each with a different classical action l ) (V, j): (V
) 0.5, j ) 90), (V ) 0.75, j ) 90), (V ) 1.0, j ) 90), (V ) 1.25, j )
90), and (V ) 1.5, j ) 90).

ω ) E(nf) - E(ni) = (∂E/∂n)(nf - ni) (10)

Figure 3. Energy versus error in CCS peak position with respect to
WKB transition energies for 11 different transitions associated with
the progression, V, j ) 90 f V - 1, j ) 89, where V ) 1 f 11. CCS
results are shown for five different choices of the semiclassical quantum
numbers l ) (V, j): (V - 0.5, j ) 89.5), (V - 0.5, j ) 90), (V - 0.5, j
) 89), (V, j ) 89.5), and (V - 1, j ) 89.5) with “fine” integration
parameters.

10798 J. Phys. Chem. A, Vol. 113, No. 40, 2009 Braunstein and Duff
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trajectory weighting, which although not very large, may wash
out some of the expected structure in the collision averaged
CCS of eq 7. Furthermore, for the first overtone band, we can
expect the energy error spread to be larger, as trajectories with
vibrational actions from V ) 0 to V ) 2 for example (centered
around V ) 1), will all contribute to the V ) 0 f V ) 2 peaks.

To investigate the accuracy of the CCS peak heights, Figure
4 shows the CCS Einstein A coefficients for fundamental (∆V
) 1, V f V - 1, V ) 1-9, j ) 90 f 89) and overtone (∆V )
2, V f V - 2, V ) 2-8, j ) 90 f 89) progressions in CO as
a function of the vibrational action. Results from three different
CCS calculations are shown: the rotational action j ) 89.5 with
fine numerical convergence, j ) 90.0 with fine numerical
convergence, and j ) 89.5 with standard numerical convergence.
We also show the computed Einstein A results of Chandra et
al.23 obtained with a different, but comparable CO potential and
dipole moment function for a point of comparison. The Chandra
et al. results are plotted at the average quantum number of the
transition involved, (V + (V - 1))/2 for the fundamental and (V
+ (V - 2))/2 for the overtone, to more clearly illustrate the
trends. It is well-known that Einstein A values, especially for
higher vibrational states, are highly dependent on the fine details
of the potential and dipole moment function. However, the
Chandra et al. results will be a useful guide to the basic accuracy
of the CCS peak heights and will indicate the degree accuracy
expected of the CCS when highly accurate but not “exact”
potentials and dipole moment functions are used. Except for
the largest vibrational levels, the CCS fine integration results
with j ) 89.5 agree qualitatively with the results of Chandra et
al. when the vibrational actions are equal to the average values
of the transitions. This agrees with the work of Noid et al. and
is consistent with the analysis of the energy values in Figures
2 and 3. Values of the Einstein A coefficients change smoothly
with vibrational action. The relative change in the Einstein A
values with vibrational action bracketing a particular transition,

however, is much larger than the corresponding energy values.
For example, for the fundamental transitions, the CCS Einstein
A values change by a factor of ∼4 going from a vibrational
action of 0 to 1, with the value at vibrational action of 1/2

agreeing best with the Chandra et al. value. There is a much
smaller sensitivity of the Einstein A to the rotational action.
The integration error going from standard to fine convergence
is surprisingly large for the fundamental band, especially for
higher vibrational levels. For the overtone progression, we
observe all the same trends, except that the differences between
the Chandra et al. and CCS results are much less, and the
integration errors are far less. The improved ∆V ) 2 integration
errors may arise from the fact that important contributions to
the spectrum could be coming from near the classical turning
points, where the velocity is slower and the time-step require-
ments less severe. The better agreement with the results of
Chandra et al. could likewise arise from better agreement
between the present CO potential used here and that used by
Chandra et al. near the classical turning points.

B. Averaged Trajectories. We now present results for the
averaged CCS, eq 7. We will examine the collision system
O + CO at 8 km/s and use the product CO position and
momenta from previous QCT calculations.12,13 A large spread
of product CO vibrational and rotational states are accessed
(V ) 10+ and j ) 100+), so this collision system makes for
a good test case. Figure 5 shows averaged CCS calculated
with “standard” integration parameters over a large scale,
with a weight of one for each trajectory. The spectrum labeled
“Reference” is used for comparison. This “Reference”
spectrum is computed from eq 9, where the probabilities Pl

are obtained from standard histogram binning into CO(V,j)
states, the Einstein A{u}l are taken from Chandra et al.,23 and
the peak positions are taken from the WKB energies of
individual (V, j) lines. The averaged CCS results have been
divided by the energy bin width of 0.318 cm-1 and the eq 9
reference spectral peaks have been summed into 2.5 cm-1

bins to give common units of 1/(s cm-1) to facilitate
comparisons. We also note that both the averaged CCS results
and the reference spectrum contain contributions from each

Figure 4. CCS Einstein A coefficients for fundamental (∆V ) 1, Vf
V - 1, V ) 1-9, j ) 90 f 89) and overtone (∆V ) 2, V f V - 2, V
) 2-8, j ) 90f 89) progressions in CO as a function of the vibrational
action. Results from three different CCS calculations are shown: (V, j
) 89.5 (F)) the rotational action j ) 89.5 with fine numerical
convergence, (V, j ) 90.0 (F)) j ) 90.0 with fine numerical convergence,
and (V ) 89.5 (S)) j ) 89.5 with standard numerical convergence.
Einstein A values from Chandra et al.23 are also plotted at the average
vibrational action of the transition involved, (V + (V - 1))/2 for the
fundamental and (V + (V - 2))/2 for the overtone.

Figure 5. CCS per energy for collisions of O + CO at 8 km/s.
Averaged CCS calculated from eq 7 with “standard” integration
parameters using a weight of one for each trajectory (CCS). Also shown
are results from eq 9, “reference”, where the probabilities Pl are obtained
from standard histogram binning into CO(V,j) states, the Einstein A{u}l

are taken from Chandra et al.,23 and the peak positions are taken from
the WKB energies of individual (V, j) lines.
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of the three lowest triplet electronic states involved in the O
+ CO collision system. For the averaged CCS, 1.e5
trajectories were averaged over for each electronic state, while
the reference spectrum contained 2.5e5 trajectories to com-
pute the QCT probabilities. In both spectra, most of the
spectral intensity is due to “absorption” spectra of CO(V)0,j)
product states (vibrationally elastic collisions), but the higher
CO vibrational states also contribute significantly. The
averaged CCS reproduces the overall intensities and extent
of the different vibrational bands semiquantitatively. We do
not expect exact agreement, as the Einstein A coefficients of
the reference spectrum were obtained with a different
potential and dipole moment function. However, there are
some systematic differences which are due to the nature of
the CCS. The averaged CCS is missing the band head
structure due to high rotational state transitions evident in
the ∆V ) 2 and ∆V ) 3 part of the reference spectrum. This
is due to the spread of vibrational and rotational actions in
each band, which shifts the position and modulates the
strength of the CCS spectral lines. The shift and modulation
of individual spectral lines tends to wash out any structure
within a band. We have noted that as more trajectories
contribute to the averaged CCS, the very fine structure evident
in the ∆V ) 4 manifold tends to wash out, as in the ∆V ) 1
band. The averaged CCS also contains structure extending
past the high energy part of the reference spectrum in each
∆V region. This is due to the contributions from the large
number of collisions which end up with vibrational actions
near and below 0 (vibrationally elastic collisions). For these
collisions the transition energies will tend to be overestimated,
and this will give a spurious blue edged contribution to each
∆V progression. We also note that as the number of averaged
trajectories becomes greater and the sampling of vibrational
and rotational actions becomes more continuous, the fine
structure in each ∆V progression begins to smooth away. This
is due to modulation of peak positions and peak heights with
the vibrational and rotational action of each single CCS
trajectory contributing to the average.

We now investigate how choices of trajectory weights can
bring out interesting structure in the averaged CCS and diminish
some of the differences with the reference spectrum. We
introduce a Gaussian weighting function of the form,18,19,24

where V is the vibrational action. In eq 11, s can take on two
values: either 1.0, which more heavily weights vibrational
actions near integer values (G1 weighting), or 1.5, which more
heavily weights half-integer values of the vibrational action
(G1/2 weighting). The value of � is the bin-width parameter.
Following previous experience,24 we used a value of � ) 16.651
which corresponds to a full-width-half-maximum (fwhm) of 0.1
across a vibrational action bin-width of 1.0. Figure 6 shows a
close-up of the ∆V ) 1 fundamental region of the averaged
CCS spectra using various trajectory weights. We also show
the reference spectra where we have removed the vibrationally
elastic (V ) 0) contributions to the sum of eq 9 and instead of
Pl we use Pu so the most blue transition (l f u) is 0f1, rather
than V ) 1f 2. Removing the dominant V ) 0 contributions
and plotting the reference spectrum in this way brings out the
band head structure of the very high CO rotational states excited
in the collision, which are labeled by their upper vibrational
state. There are three average CCS results using different kinds
of weights. Figure 6a shows the results including all vibrational
actions greater than V ) 0.5 and with weights of 1.0 for each
trajectory, which we call histogram binning (H). Figure 6b
shows the averaged CCS using Gaussian half-integer (G1/2)
binning, according to eq 10, where only trajectories with
vibrational actions greater than V ) 0.0 are kept. Figure 6c
shows Gaussian integer binning (G1), where only trajectories
with vibrational actions greater than V ) 0.5 are kept. The
histogram binned results recover the extent, general shape, and
magnitude of the reference spectra well. However, the histogram
binned results wash out the band head peaks. This is due to the
modulation of the peak height and position with the vibrational
and rotational action which are equally weighted across bins.
For the Gaussian half-integer weighted results, the band head
structure is recovered well. For the fundamental band, the half-
integer action weighting reduces the range of the vibrational
action to regions near the half-integer values, which are optimal
for the ∆V ) 1 fundamental band. The Gaussian integer
weighted results recover the band-hand structure, but they are
shifted too low in energy. The lowest vibrational actions (highest
energy fundamental transitions) for the Gaussian integer results
are centered near V ) 1, which is optimal for V ) 0.5 f V )
1.5 transition and is shifted too low in energy for the 0 f 1
reference peak.

Figure 7a-c shows the same reference spectrum and average
CCS results, but in the spectral range of the first overtone, ∆V
) 2. As in the previous figure, the (a)-(c) results show
histogram, Gaussian half-integer, and Gaussian integer weight-

Figure 6. Same as Figure 5 in the fundamental band transition region with various trajectory weights used for the averaged CCS. H denotes
standard histogram binning, with a weight of 1.0 for each trajectory and only vibrational actions with V g 0.5 are included, G(1/2) uses Gaussian
weighting of trajectories centered on half-integer vibrational actions starting with V ) 0, and G(1) uses Gaussian weights centered on integer
vibrational actions starting at V ) 0.5. For the reference spectrum only vibrational bins with V > 0 are included.

G(V,s) ) �
√π

exp(-(�(mod(V + s,1.0)))2) (11)
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ing, respectively. For the first overtone region, the Gaussian
integer weighted results have the best match to the reference
spectrum, reproducing the band head structure of the reference
spectrum in detail. For the overtone reference spectra, the highest
energy transitions are 0 f 2, and the averaged CCS centered
on integer vibrational actions of 1 and higher, as is the Gaussian
integer results, are optimal. Figure 8a-c shows the same
reference and weighted results, but in the second overtone
region, ∆V ) 3. Here the half-integer weighted results appear
to match the reference spectra best. However, we note that at
the high energy end of the spectrum, the average CCS extends
past the reference spectrum. This is because the highest energy
band head corresponds to 0f 3 transitions, which corresponds
to an optimal vibrational action of 1.5. Our half-integer Gaussian
weighted average, however, starts with vibrational actions
centered at 0.5, giving transition energies that are too large.

From the very good agreement between the CCS and
reference spectra in Figures 6b and 7c with standard integration
parameters, we expect that the semiclassical sources of error,
which tend to shift the spectra systematically, will be a larger
consideration than numerical error in practice.

IV. Conclusions

In this paper, we formulated an extension of the work of Noid
et al.1 to obtain classical spectra through Fourier transform of
the dipole moment function of collision product trajectories.
We showed that this “classical collision spectrum” (CCS) is
related to a set of Einstein A values and transition energies. We
then showed that a weighted average CCS, obtained in the usual
way from standard QCT Monte Carlo trajectory methods, is
related to a sum of ro-vibrational specific cross sections times

a set of Einstein A values. As a test case we computed the CCS
of single trajectories of CO. We investigated the sensitivity of
the CCS to numerical convergence parameters and the depen-
dence of the CCS on the vibrational and rotational actions. We
then applied the method to generating averaged CCS from O
+ CO collisions at 8 km/s. The averaged CCS of these
trajectories shows rich quantum-like structure including well-
separated vibrational overtones and rotational band heads, which
becomes more pronounced with particular trajectory weighting
methods.

The computation of average CCS is a straightforward
extension of existing classical trajectory methods. Future work
will apply the classical spectral methods developed here to
collisions of polyatomic systems and analysis of polyatomic
products. Using direct dynamics methods, which should yield
forces and dipole moment functions at each trajectory point, it
should be possible to calculate the average CCS straightfor-
wardly, even for large molecular systems. With knowledge of
the Einstein A coefficients of collision products, in principle it
should be possible to deconvolve the average CCS and estimate
probabilities to quantum specific final states. The hope is that
the contributions from various vibrational modes will separate
more cleanly in the classical spectra than in conventional QCT
energy binning methods. Finally we note that the CCS should
be directly comparable to the absorption spectrum of nascent
collision products in molecular beam experiments, and so may
provide a useful common point of comparison between theory
and measurements.

For polyatomic systems, an important possible complication
of the present analysis is that the products may undergo internal
relaxation or some other process during the time period of the

Figure 7. Same as Figure 6, except in the overtone region.

Figure 8. Same as Figure 6, except in the second overtone region.
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Fourier transform. Furthermore, chaotic trajectories may intro-
duce a dense forest of spectral lines within vibrational bands
and effectively broaden spectral features. Classically chaotic
motion, some of which may not have a quantum analog, may
introduce spurious structure into the CCS. At higher energies,
where classically chaotic motion is more likely, spectral
broadening will make it more difficult to extract quantum
specific cross sections.

However, for the system examined here and for many other
polyatomic systems11 chaotic trajectories may not be a real
difficulty in practice. High resolution of spectral features may
not be required in many applications, where for example it is
sufficient to separate bending and stretching vibrational motions.
Furthermore, to the extent that the collision products are quasi-
periodic, spectral estimation methods, such as linear prediction
and filter diagonalization, can be used to decrease trajectory
times and increase computational efficiency. One benchmark
polyatomic application we plan on pursuing in the near future
is the collisional excitation of H2O by fast O-atoms, where
interesting data25,26 and new potential surfaces27 exist. In this
case, exact quantum scattering treatments are possible, so that
classical and quantum-mechanical ro-vibrationally specific cross
sections can be compared using the same surface. O-atom
interactions with hydrocarbon systems are also of current
interest28 and could be examined in future work.
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